MATH 20D Spring 2023 Lecture 13. Abel's Formula and Variation of Parameters

Announcements

- Homework 4 has been released, due this coming Tuesday at 10pm.
- Grades for midterm 1 have been released, regrade request closing this Friday at 11:59pm.

Announcements

- Homework 4 has been released, due this coming Tuesday at 10pm.
- Grades for midterm 1 have been released, regrade request closing this Friday at $11: 59 \mathrm{pm}$. Please look over your exam to make sure there were no mistakes in the grading.

Outline

(1) Abel's Formula

(2) Variation of Parameters

Contents

(1) Abel's Formula

(2) Variation of Parameters

Last Time

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

Last Time

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

Lemma

If u_{1} and u_{2} are linearly dependent on I then $W\left[u_{1}, u_{2}\right](t) \equiv 0$ on I.

Last Time

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

Lemma

If u_{1} and u_{2} are linearly dependent on I then $W\left[u_{1}, u_{2}\right](t) \equiv 0$ on I.

- So if $W\left[u_{1}, u_{2}\right](t) \not \equiv 0$ on I then u_{1} and u_{2} are linearly independent. However the converse to this statement can fail.

Last Time

Definition

- Let $u_{1}(t)$ and $u_{2}(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_{1}(t)$ and $u_{2}(t)$ is the function

$$
W\left[u_{1}, u_{2}\right]: I \rightarrow \mathbb{R}, \quad W\left[u_{1}, u_{2}\right](t)=u_{1}(t) u_{2}^{\prime}(t)-u_{2}(t) u_{1}^{\prime}(t) .
$$

Lemma

If u_{1} and u_{2} are linearly dependent on I then $W\left[u_{1}, u_{2}\right](t) \equiv 0$ on I.

- So if $W\left[u_{1}, u_{2}\right](t) \not \equiv 0$ on I then u_{1} and u_{2} are linearly independent. However the converse to this statement can fail.

Example

The functions

$$
u_{1}(t)=t^{2} \quad \text { and } \quad u_{2}(t)=t|t|
$$

are linearly independent on \mathbb{R} and $\operatorname{Wr}\left[u_{1}, u_{2}\right](t)=0$ for all $t \in \mathbb{R}$.

Abel's Formula

Theorem

Let u_{1} and u_{2} be two solutions to a differential equation of the form

$$
y^{\prime \prime}(t)+p(t) y(t)+q(t) y(t)=0
$$

with $p(t)$ and $q(t)$ are continuous on $(-\infty, \infty)$.

Abel's Formula

Theorem

Let u_{1} and u_{2} be two solutions to a differential equation of the form

$$
y^{\prime \prime}(t)+p(t) y(t)+q(t) y(t)=0
$$

with $p(t)$ and $q(t)$ are continuous on $(-\infty, \infty)$.

- Then

$$
\mathrm{Wr}\left[u_{1}, u_{2}\right](t)=W_{0} \exp \left(-\int_{0}^{t} p(\tau) d \tau\right)
$$

where $W_{0}=\mathrm{Wr}\left[u_{1}, u_{2}\right](0)$.

Abel's Formula

Theorem

Let u_{1} and u_{2} be two solutions to a differential equation of the form

$$
y^{\prime \prime}(t)+p(t) y(t)+q(t) y(t)=0
$$

with $p(t)$ and $q(t)$ are continuous on $(-\infty, \infty)$.

- Then

$$
\mathrm{Wr}\left[u_{1}, u_{2}\right](t)=W_{0} \exp \left(-\int_{0}^{t} p(\tau) d \tau\right)
$$

where $W_{0}=\mathrm{Wr}\left[u_{1}, u_{2}\right](0)$.

- If $\mathrm{Wr}\left[u_{1}, u_{2}\right] \equiv 0$ then u_{1} and u_{2} are linearly dependent on \mathbb{R}.

Abel's Formula

Theorem

Let u_{1} and u_{2} be two solutions to a differential equation of the form

$$
y^{\prime \prime}(t)+p(t) y(t)+q(t) y(t)=0
$$

with $p(t)$ and $q(t)$ are continuous on $(-\infty, \infty)$.

- Then

$$
\mathrm{Wr}\left[u_{1}, u_{2}\right](t)=W_{0} \exp \left(-\int_{0}^{t} p(\tau) d \tau\right)
$$

where $W_{0}=\mathrm{Wr}\left[u_{1}, u_{2}\right](0)$.

- If $\mathrm{Wr}\left[u_{1}, u_{2}\right] \equiv 0$ then u_{1} and u_{2} are linearly dependent on \mathbb{R}.

Example

Let $a \neq 0, b$ and c be constants. Show that if y_{1}, y_{2} are any two solutions to the equations $a y^{\prime \prime}+b y^{\prime}+c y=0$ then $\mathrm{Wr}\left[y_{1}, y_{2}\right](t)=C e^{-b t / a}$ for some constant C.

Abel's Formula

Theorem

Let u_{1} and u_{2} be two solutions to a differential equation of the form

$$
y^{\prime \prime}(t)+p(t) y(t)+q(t) y(t)=0
$$

with $p(t)$ and $q(t)$ are continuous on $(-\infty, \infty)$.

- Then

$$
\mathrm{Wr}\left[u_{1}, u_{2}\right](t)=W_{0} \exp \left(-\int_{0}^{t} p(\tau) d \tau\right)
$$

where $W_{0}=\mathrm{Wr}\left[u_{1}, u_{2}\right](0)$.

- If $\mathrm{Wr}\left[u_{1}, u_{2}\right] \equiv 0$ then u_{1} and u_{2} are linearly dependent on \mathbb{R}.

Example

Let $a \neq 0, b$ and c be constants. Show that if y_{1}, y_{2} are any two solutions to the equations $a y^{\prime \prime}+b y^{\prime}+c y=0$ then $\mathrm{Wr}\left[y_{1}, y_{2}\right](t)=C e^{-b t / a}$ for some constant C. Calculate $\mathrm{Wr}\left[e^{\alpha t} \cos (\beta t), e^{\alpha t} \sin (\beta t)\right](t)$ where $\alpha \in \mathbb{R}$ and $\beta>0$ are constants.

Contents

(1) Abel's Formula

(2) Variation of Parameters

Variation of Parameters I

Goal

Construct a particular solution to an inhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{1}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous functions defined an interval I.

Variation of Parameters I

Goal

Construct a particular solution to an inhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{1}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous functions defined an interval I.

- Fix linearly independent solution $y_{1}(t), y_{2}(t)$ to the homogeneous equation

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0 .
$$

Variation of Parameters I

Goal

Construct a particular solution to an inhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{1}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous functions defined an interval I.

- Fix linearly independent solution $y_{1}(t), y_{2}(t)$ to the homogeneous equation

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0 .
$$

- Trial a solution to (1) of form

$$
\begin{equation*}
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t) \tag{2}
\end{equation*}
$$

where $v_{1}(t)$ and $v_{2}(t)$ continuous functions defined on I.

Variation of Parameters I

Goal

Construct a particular solution to an inhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{1}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous functions defined an interval I.

- Fix linearly independent solution $y_{1}(t), y_{2}(t)$ to the homogeneous equation

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0 .
$$

- Trial a solution to (1) of form

$$
\begin{equation*}
y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t) \tag{2}
\end{equation*}
$$

where $v_{1}(t)$ and $v_{2}(t)$ continuous functions defined on I.

- In this set-up we're trying to find $v_{1}(t)$ and $v_{2}(t)$ so that (2) solves (1).

Variation of Parameters II

Goal

Find v_{1} and v_{2} such that $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ is a solution to

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g . \tag{3}
\end{equation*}
$$

- v_{1} and v_{2} are two unknowns \Longrightarrow find v_{1} and v_{2} using two equations.

Variation of Parameters II

Goal

Find v_{1} and v_{2} such that $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ is a solution to

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g \tag{3}
\end{equation*}
$$

- v_{1} and v_{2} are two unknowns \Longrightarrow find v_{1} and v_{2} using two equations.
- Equation 1: $v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0$.

Variation of Parameters II

Goal

Find v_{1} and v_{2} such that $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ is a solution to

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g \tag{3}
\end{equation*}
$$

- v_{1} and v_{2} are two unknowns \Longrightarrow find v_{1} and v_{2} using two equations.
- Equation 1: $v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0$. This implies $y_{p}^{\prime}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}$

Variation of Parameters II

Goal

Find v_{1} and v_{2} such that $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ is a solution to

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g . \tag{3}
\end{equation*}
$$

- v_{1} and v_{2} are two unknowns \Longrightarrow find v_{1} and v_{2} using two equations.
- Equation 1: $v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0$. This implies $y_{p}^{\prime}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}$ and so $y_{p}^{\prime \prime}=v_{1}^{\prime} y_{1}^{\prime}+v_{1} y_{1}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime}+v_{2} y_{2}^{\prime \prime}$.

Variation of Parameters II

Goal

Find v_{1} and v_{2} such that $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ is a solution to

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g \tag{3}
\end{equation*}
$$

- v_{1} and v_{2} are two unknowns \Longrightarrow find v_{1} and v_{2} using two equations.
- Equation 1: $v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0$. This implies $y_{p}^{\prime}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}$ and so $y_{p}^{\prime \prime}=v_{1}^{\prime} y_{1}^{\prime}+v_{1} y_{1}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime}+v_{2} y_{2}^{\prime \prime}$.
- Substituting $y_{p}^{\prime \prime}, y_{p}^{\prime}$, and y_{p} into (3) gives Equation 2: $v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=g$.

Variation of Parameters II

Goal

Find v_{1} and v_{2} such that $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ is a solution to

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=g . \tag{3}
\end{equation*}
$$

- v_{1} and v_{2} are two unknowns \Longrightarrow find v_{1} and v_{2} using two equations.
- Equation 1: $v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0$. This implies $y_{p}^{\prime}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}$ and so

$$
y_{p}^{\prime \prime}=v_{1}^{\prime} y_{1}^{\prime}+v_{1} y_{1}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime}+v_{2} y_{2}^{\prime \prime} .
$$

- Substituting $y_{p}^{\prime \prime}, y_{p}^{\prime}$, and y_{p} into (3) gives Equation 2: $v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=g$.
- Solving the system

$$
\left\{\begin{array}{l}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=g
\end{array}\right.
$$

by elimination and substitution gives

$$
v_{1}^{\prime}=-\frac{g \cdot y_{2}}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}} \quad \text { and } \quad v_{1}^{\prime}=\frac{g \cdot y_{1}}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}}
$$

Variation of Parameters III

Theorem

- Consider an inhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{4}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous function defined on an interval I.

Variation of Parameters III

Theorem

- Consider an inhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{4}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous function defined on an interval I.

- Let $y_{1}(t)$ and $y_{2}(t)$ be linearly independent solution to the homogeneous equation corresponding to (4).

Variation of Parameters III

Theorem

- Consider an inhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{4}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous function defined on an interval I.

- Let $y_{1}(t)$ and $y_{2}(t)$ be linearly independent solution to the homogeneous equation corresponding to (4).
- If

$$
v_{1}(t)=\int \frac{-g(t) y_{2}(t) d t}{\mathrm{Wr}\left[y_{1}, y_{2}\right](t)} \quad \text { and } \quad v_{2}(t)=\int \frac{g(t) y_{1}(t) d t}{\mathrm{Wr}\left[y_{1}, y_{2}\right](t)}
$$

then $y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$ is a particular solution to (4).

Variation of Parameters III

Theorem

- Consider an inhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t) . \tag{4}
\end{equation*}
$$

where $p(t), q(t)$, and $g(t)$ are continuous function defined on an interval I.

- Let $y_{1}(t)$ and $y_{2}(t)$ be linearly independent solution to the homogeneous equation corresponding to (4).
- If

$$
v_{1}(t)=\int \frac{-g(t) y_{2}(t) d t}{\mathrm{Wr}\left[y_{1}, y_{2}\right](t)} \quad \text { and } \quad v_{2}(t)=\int \frac{g(t) y_{1}(t) d t}{\mathrm{Wr}\left[y_{1}, y_{2}\right](t)}
$$

then $y_{p}(t)=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$ is a particular solution to (4).

Example

Find a particular solution to the equation

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+2 y(t)=e^{-t} \operatorname{cosec}(t), \quad t \in(0, \pi) .
$$

Variation of Parameters IV

Example

Given that $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{3}$ are linearly independent solutions to the equation

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0, \quad t>0
$$

Find a particular solution to the equation

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=4 t^{3}, \quad t>0
$$

