MATH 20D Spring 2023 Lecture 13.

Abel's Formula and Variation of Parameters

Announcements

- Homework 4 has been released, due this coming Tuesday at 10pm.
- Grades for midterm 1 have been released, regrade request closing this Friday at 11:59pm.

Announcements

- Homework 4 has been released, due this coming Tuesday at 10pm.
- Grades for midterm 1 have been released, regrade request closing this Friday at 11:59pm. Please look over your exam to make sure there were no mistakes in the grading.

Outline

Abel's Formula

Variation of Parameters

Contents

Abel's Formula

Variation of Parameters

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The **Wronskian** of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The **Wronskian** of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Lemma

If u_1 and u_2 are linearly dependent on I then $W[u_1, u_2](t) \equiv 0$ on I.

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The Wronskian of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Lemma

If u_1 and u_2 are linearly dependent on I then $W[u_1, u_2](t) \equiv 0$ on I.

• So if $W[u_1, u_2](t) \neq 0$ on I then u_1 and u_2 are linearly **independent**. However the converse to this statement can fail.

Definition

- Let $u_1(t)$ and $u_2(t)$ are differentiable functions defined on an interval I.
- The **Wronskian** of $u_1(t)$ and $u_2(t)$ is the function

$$W[u_1, u_2]: I \to \mathbb{R}, \qquad W[u_1, u_2](t) = u_1(t)u_2'(t) - u_2(t)u_1'(t).$$

Lemma

If u_1 and u_2 are linearly dependent on I then $W[u_1, u_2](t) \equiv 0$ on I.

• So if $W[u_1, u_2](t) \neq 0$ on I then u_1 and u_2 are linearly **independent**. However the converse to this statement can fail.

Example

The functions

$$u_1(t) = t^2$$
 and $u_2(t) = t|t|$

are linearly independent on \mathbb{R} and $\operatorname{Wr}[u_1, u_2](t) = 0$ for all $t \in \mathbb{R}$.

Theorem

Let u_1 and u_2 be two solutions to a differential equation of the form

$$y''(t) + p(t)y(t) + q(t)y(t) = 0$$

with p(t) and q(t) are continuous on $(-\infty, \infty)$.

Theorem

Let u_1 and u_2 be two solutions to a differential equation of the form

$$y''(t) + p(t)y(t) + q(t)y(t) = 0$$

with p(t) and q(t) are continuous on $(-\infty, \infty)$.

Then

$$\operatorname{Wr}[u_1, u_2](t) = W_0 \exp\left(-\int_0^t p(\tau)d\tau\right)$$

where $W_0 = Wr[u_1, u_2](0)$.

Theorem

Let u_1 and u_2 be two solutions to a differential equation of the form

$$y''(t) + p(t)y(t) + q(t)y(t) = 0$$

with p(t) and q(t) are continuous on $(-\infty, \infty)$.

Then

$$\operatorname{Wr}[u_1, u_2](t) = W_0 \exp\left(-\int_0^t p(\tau)d\tau\right)$$

where $W_0 = Wr[u_1, u_2](0)$.

• If $Wr[u_1, u_2] \equiv 0$ then u_1 and u_2 are linearly dependent on \mathbb{R} .

Theorem

Let u_1 and u_2 be two solutions to a differential equation of the form

$$y''(t) + p(t)y(t) + q(t)y(t) = 0$$

with p(t) and q(t) are continuous on $(-\infty, \infty)$.

Then

$$\operatorname{Wr}[u_1, u_2](t) = W_0 \exp\left(-\int_0^t p(\tau)d\tau\right)$$

where $W_0 = Wr[u_1, u_2](0)$.

• If $Wr[u_1, u_2] \equiv 0$ then u_1 and u_2 are linearly dependent on \mathbb{R} .

Example

Let $a \neq 0$, b and c be constants. Show that if y_1, y_2 are any two solutions to the equations ay'' + by' + cy = 0 then $Wr[y_1, y_2](t) = Ce^{-bt/a}$ for some constant C.

Theorem

Let u_1 and u_2 be two solutions to a differential equation of the form

$$y''(t) + p(t)y(t) + q(t)y(t) = 0$$

with p(t) and q(t) are continuous on $(-\infty, \infty)$.

Then

$$\operatorname{Wr}[u_1, u_2](t) = W_0 \exp\left(-\int_0^t p(\tau)d\tau\right)$$

where $W_0 = Wr[u_1, u_2](0)$.

• If $Wr[u_1, u_2] \equiv 0$ then u_1 and u_2 are linearly dependent on \mathbb{R} .

Example

Let $a \neq 0$, b and c be constants. Show that if y_1, y_2 are any two solutions to the equations ay'' + by' + cy = 0 then $\operatorname{Wr}[y_1, y_2](t) = Ce^{-bt/a}$ for some constant C. Calculate $\operatorname{Wr}[e^{\alpha t}\cos(\beta t), e^{\alpha t}\sin(\beta t)](t)$ where $\alpha \in \mathbb{R}$ and $\beta > 0$ are constants.

Contents

Abel's Formula

Variation of Parameters

Goal

Construct a particular solution to an inhomogeneous equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(1)

where p(t), q(t), and g(t) are continuous functions defined an **interval** I.

Goal

Construct a particular solution to an **inhomogeneous** equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(1)

where p(t), q(t), and g(t) are continuous functions defined an **interval** I.

• Fix linearly independent solution $y_1(t)$, $y_2(t)$ to the homogeneous equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0.$$

Goal

Construct a particular solution to an **inhomogeneous** equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(1)

where p(t), q(t), and g(t) are continuous functions defined an **interval** I.

• Fix linearly independent solution $y_1(t)$, $y_2(t)$ to the homogeneous equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0.$$

Trial a solution to (1) of form

$$y_p(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$$
 (2)

where $v_1(t)$ and $v_2(t)$ continuous functions defined on *I*.

Goal

Construct a particular solution to an **inhomogeneous** equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(1)

where p(t), q(t), and g(t) are continuous functions defined an **interval** I.

• Fix linearly independent solution $y_1(t)$, $y_2(t)$ to the homogeneous equation

$$y''(t) + p(t)y'(t) + q(t)y(t) = 0.$$

Trial a solution to (1) of form

$$y_p(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$$
 (2)

where $v_1(t)$ and $v_2(t)$ continuous functions defined on I.

• In this set-up we're trying to find $v_1(t)$ and $v_2(t)$ so that (2) solves (1).

Goal

Find v_1 and v_2 such that $y_p = v_1y_1 + v_2y_2$ is a solution to

$$y'' + py' + qy = g. ag{3}$$

• v_1 and v_2 are two unknowns \Longrightarrow find v_1 and v_2 using two equations.

Goal

$$y'' + py' + qy = g. ag{3}$$

- v_1 and v_2 are two unknowns \Longrightarrow find v_1 and v_2 using two equations.
- Equation 1: $v_1'y_1 + v_2'y_2 = 0$.

Goal

$$y'' + py' + qy = g. ag{3}$$

- v_1 and v_2 are **two unknowns** \Longrightarrow find v_1 and v_2 using **two equations**.
- **Equation 1:** $v_1'y_1 + v_2'y_2 = 0$. This implies $y_p' = v_1y_1' + v_2y_2'$

Goal

$$y'' + py' + qy = g. ag{3}$$

- v_1 and v_2 are **two unknowns** \Longrightarrow find v_1 and v_2 using **two equations**.
- **Equation 1:** $v_1'y_1 + v_2'y_2 = 0$. This implies $y_p' = v_1y_1' + v_2y_2'$ and so

$$y_p'' = v_1'y_1' + v_1y_1'' + v_2'y_2' + v_2y_2''.$$

Goal

$$y'' + py' + qy = g. ag{3}$$

- v_1 and v_2 are **two unknowns** \Longrightarrow find v_1 and v_2 using **two equations**.
- Equation 1: $v'_1y_1 + v'_2y_2 = 0$. This implies $y'_p = v_1y'_1 + v_2y'_2$ and so $y''_p = v'_1y'_1 + v_1y''_1 + v'_2y'_2 + v_2y''_2$.
- Substituting y_p'' , y_p' , and y_p into (3) gives **Equation 2:** $v_1'y_1' + v_2'y_2' = g$.

Goal

Find v_1 and v_2 such that $y_p = v_1y_1 + v_2y_2$ is a solution to

$$y'' + py' + qy = g. ag{3}$$

- v_1 and v_2 are **two unknowns** \Longrightarrow find v_1 and v_2 using **two equations**.
- Equation 1: $v_1'y_1 + v_2'y_2 = 0$. This implies $y_p' = v_1y_1' + v_2y_2'$ and so

$$y_p'' = v_1'y_1' + v_1y_1'' + v_2'y_2' + v_2y_2''.$$

- Substituting y_p'', y_p' , and y_p into (3) gives **Equation 2:** $v_1'y_1' + v_2'y_2' = g$.
- Solving the system

$$\begin{cases} v_1' y_1 + v_2' y_2 = 0 \\ v_1' y_1' + v_2' y_2' = g \end{cases}$$

by elimination and substitution gives

$$v'_1 = -\frac{g \cdot y_2}{y_1 y'_2 - y_2 y'_1}$$
 and $v'_1 = \frac{g \cdot y_1}{y_1 y'_2 - y_2 y'_1}$

Theorem

Consider an inhomogeneous ODE

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(4)

where p(t), q(t), and g(t) are continuous function defined on an interval I.

Theorem

Consider an inhomogeneous ODE

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(4)

where p(t), q(t), and g(t) are continuous function defined on an interval I.

• Let $y_1(t)$ and $y_2(t)$ be linearly independent solution to the homogeneous equation corresponding to (4).

Theorem

Consider an inhomogeneous ODE

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(4)

where p(t), q(t), and g(t) are continuous function defined on an interval I.

- Let $y_1(t)$ and $y_2(t)$ be linearly independent solution to the homogeneous equation corresponding to (4).
- If

$$v_1(t) = \int \frac{-g(t)y_2(t)dt}{\operatorname{Wr}[y_1, y_2](t)}$$
 and $v_2(t) = \int \frac{g(t)y_1(t)dt}{\operatorname{Wr}[y_1, y_2](t)}$

then $y_p(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$ is a particular solution to (4).

Theorem

Consider an inhomogeneous ODE

$$y''(t) + p(t)y'(t) + q(t)y(t) = g(t).$$
(4)

where p(t), q(t), and g(t) are continuous function defined on an interval I.

- Let $y_1(t)$ and $y_2(t)$ be linearly independent solution to the homogeneous equation corresponding to (4).
- If

$$v_1(t) = \int \frac{-g(t)y_2(t)dt}{\operatorname{Wr}[y_1, y_2](t)}$$
 and $v_2(t) = \int \frac{g(t)y_1(t)dt}{\operatorname{Wr}[y_1, y_2](t)}$

then $y_p(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$ is a particular solution to (4).

Example

Find a particular solution to the equation

$$y''(t) + 2y'(t) + 2y(t) = e^{-t} \operatorname{cosec}(t), \quad t \in (0, \pi).$$

Example

Given that $y_1(t) = t^2$ and $y_2(t) = t^3$ are linearly independent solutions to the equation

$$t^2y'' - 4ty' + 6y = 0, t > 0.$$

Find a particular solution to the equation

$$t^2y'' - 4ty' + 6y = 4t^3, t > 0.$$